Recovery of Na-glucose cotransport activity after renal ischemia is impaired in mice lacking vimentin.

نویسندگان

  • Isabelle Runembert
  • Sylviane Couette
  • Pierre Federici
  • Emma Colucci-Guyon
  • Charles Babinet
  • Pascale Briand
  • Gérard Friedlander
  • Fabiola Terzi
چکیده

Vimentin, an intermediate filament protein mainly expressed in mesenchyma-derived cells, is reexpressed in renal tubular epithelial cells under many pathological conditions, characterized by intense cell proliferation. Whether vimentin reexpression is only a marker of cell dedifferentiation or is instrumental in the maintenance of cell structure and/or function is still unknown. Here, we used vimentin knockout mice (Vim(-/-)) and an experimental model of acute renal injury (30-min bilateral renal ischemia) to explore the role of vimentin. Bilateral renal ischemia induced an initial phase of acute tubular necrosis that did not require vimentin and was similar, in terms of morphological and functional changes, in Vim(+/+) and Vim(-/-) mice. However, vimentin was essential to favor Na-glucose cotransporter 1 localization to brush-border membranes and to restore Na-glucose cotransport activity in regenerating tubular cells. We show that the effect of vimentin inactivation is specific and results in persistent glucosuria. We propose that vimentin is part of a structural network that favors carrier localization to plasma membranes to restore transport activity in injured kidneys.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts.

It has been reported that vimentin, a cytoskeleton filament that is expressed only in mesenchymal cells after birth, is re-expressed in epithelial cells in vivo under pathological conditions and in vitro in primary culture. Whether vimentin re-expression is only a marker of cellular dedifferentiation or is instrumental in the maintenance of cell structure and/or function is a matter of debate. ...

متن کامل

Liver Oxidative Stress after Renal Ischemia-Reperfusion Injury is Leukocyte Dependent in Inbred Mice

Objective(s) There are some reports in recent years indicating that renal ischemia - reperfusion (IR) induces deleterious changes in remote organs such as liver. The aim of this study was to investigate whether leukocytes have a role on the induction of oxidative stress in liver after renal IR. Materials and Methods Inbred mice in IR donor group were subjected to renal IR injury. In sham don...

متن کامل

Renal Na(+)-glucose cotransporters.

In humans, the kidneys filter approximately 180 g of D-glucose from plasma each day, and this is normally reabsorbed in the proximal tubules. Although the mechanism of reabsorption is well understood, Na(+)-glucose cotransport across the brush-border membrane and facilitated diffusion across the basolateral membrane, questions remain about the identity of the genes responsible for cotransport a...

متن کامل

Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice.

Recent studies suggest that vitamin D may play a role in intestinal Na(+)-dependent phosphate transport adaptation to variable levels of dietary P(i). Therefore, the goal of the current study was to assess Na(+)-dependent P(i) cotransport activity in transgenic mice to determine whether vitamin D is an essential mediator of this process. Intestinal brush-border membrane (BBM), Na(+)-dependent P...

متن کامل

TRANSLATIONAL PHYSIOLOGY Increased tolerance to oxygen and glucose deprivation in astrocytes from Na /H exchanger isoform 1 null mice

Kintner, Douglas B., Gui Su, Brett Lenart, Andy J. Ballard, Jamie W. Meyer, Leong L. Ng, Gary E. Shull, and Dandan Sun. Increased tolerance to oxygen and glucose deprivation in astrocytes from Na /H exchanger isoform 1 null mice. Am J Physiol Cell Physiol 287: C12–C21, 2004. First published March 10, 2004; 10.1152/ajpcell.00560.2003.—The ubiquitously expressed Na /H exchanger isoform 1 (NHE1) f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 287 5  شماره 

صفحات  -

تاریخ انتشار 2004